However, it is not far from the truth. Steel wool pads, typically made from low-carbon steel* (for all practical purposes almost pure iron (Fe)), are bundles of steel wire fibers that are used during household cleaning to scrub items or in woodworking to sand and finish wood products. Usually, steel wool is made through the process of broaching: a thick steel wire is drawn through a toothed die, producing very thin steel shavings which are then collected and formed into the steel wool. Similar to sandpaper, steel wool is available in many different grades, ranging from very coarse (5# or greater) to very fine (000# or less).
I chose steel wool as my household object because I was interested to see how the steel wool would react with common cleaning supplies found around the house. Also, having used steel wool in Boy Scouts as kindling to start fires, especially when matches were absent, I was interested in investigating why this phenomenon occurred.
*Carbon steel is a type of metal where carbon is the main alloying ingredient added to the iron. As more carbon is added, the alloy becomes harder, yet less malleable/ductile (stretchable). In low-carbon steel, the alloy is about 0.05%-0.15% carbon (Wikipedia: Carbon Steel).
My Lab Setup:
Physical Properties:
Magnetism - Steel wool, largely constituted out of pure iron, is ferromagnetic as can be seen by this picture.
A pad of steel wool was torn up into many small pieces and then crumbled so very short filaments would fall into a test tube. In the test tube, they were suspended in baby oil and shaken so they would be evenly distributed. Next a bar magnet was placed next to the test tube. It was easily seen that the files were attracted to the magnet and actually aligned themselves with the lines of the magnetic field originating from the magnet.
Conductivity - Steel wool, like all metals, is fairly conductive.
If it were not conductive, when I touched the ends of two probes attached to a 9V battery, it would not complete the circuit, draw electricity, cause the filaments to become hot, and catch fire. However, as is clearly illustrated in the photograph, the steel wool conducts electricity.
Texture – Soft yet Abrasive
The texture of steel wool is quite peculiar. Depending on the type of steel wool one observes and handles, its texture will be different. However, for the sample of steel wool (00#) that I was performing all of my observations/experiments on, the pads were fairly soft and had a fluffy texture. Oddly, it almost felt like I was handling scratchy wool. The pads were abrasive, but not rough to the touch like sand paper. I had to be very careful when working with the fine steel wool because tiny filaments would break off and become imbedded in my fingers, forming miniscule metal splinters that were irritating and even a little painful. Therefore, for the majority of the experiments, I chose to wear latex gloves to protect my hands when handling the steel wool and other chemicals.
Color/Luster – Dull grey
The steel wool pads are a very dark dull grey. The individual filaments are slightly lustrous, reflecting little glints of light; however, the pad as a whole is not very shiny.
Ductility/Bendability – Not very ductile yet very bendable
Because the pads as a whole are substantially composed of air in between the low-carbon steel fibers, they can be compressed easily and “flattened.” However, they expand back again when the pressure is released. On the other hand, the ductility of the pads is fairly low. When the pads are pulled apart, they “rip” into two halves, not stretch out into a longer, thinner pad. The individual fibers of steel, because they are so thin, are as bendable as a human hair.
Chemical Properties:
To see steel wool's chemical properties, please click on the link below to the Prezi that I have created:
Chemical Properties of Steel Wool
And finally, after all of this mind-enticing information, I leave you with a few pictures of the beauty that flaming steel wool can create:
(Photos: 16 Cool Burning Steel Wool Photo Experiments)
Works Cited
“Carbon Steel.” Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc., 8 Sept. 2010. Web. 13 Sept. 2010. <http://en.wikipedia.org/wiki/Carbon_steel#Bibliography>.
“Countertop Chemistry Experiment 2.” The Science House. North Carolina State University, 2006. Web. 13 Sept. 2010. <http://www.science-house.org/learn/CountertopChem/exp2.html>.
“File:Iron Spectrum.jpg.” Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc., 22 Apr. 2010. Web. 13 Sept. 2010. <http://en.wikipedia.org/wiki/File:Iron_Spectrum.jpg>.
“Rust and H2O2.” Newton: Ask A Scientist. Argonne National Laboratory, Division of Educational Programs, n.d. Web. 13 Sept. 2010. <http://www.newton.dep.anl.gov/askasci/chem00/chem00253.htm>.
“16 Cool Burning Steel Wool Photo Experiments.” Photographymojo. N.p., 27 Mar. 2010. Web. 13 Sept. 2010. <http://www.photographymojo.com/2010/03/16-cool-burning-steel-wool-photo-experiments/>.
“What is the word equation for iron wool burning in pure oxygen to produce iron oxide?” Answers.com. WikiAnswers, 2010. Web. 13 Sept. 2010. <http://wiki.answers.com/Q/What_is_the_word_equation_for_iron_wool_burning_in_pure_oxygen_to_produce_iron_oxide>.